Effect of defoliation interval on water-soluble carbohydrate and nitrogen energy reserves, regrowth of leaves and roots, and tiller number of cocksfoot (Dactylis glomerata L.) plants

Author:

Turner L. R.,Donaghy D. J.,Lane P. A.,Rawnsley R. P.

Abstract

This study investigated the influence of leaf stage-based defoliation interval on water-soluble carbohydrate and nitrogen energy reserve status, regrowth of leaves and roots, and tiller number of cocksfoot (Dactylis glomerata L.) cv. Kara plants up to 24 days (3.5-leaf stage) following defoliation. Treatments were based on defoliation intervals of 1-, 2-, and 4-leaf stages of regrowth, with treatments terminated when the 1-leaf defoliation interval had been completed 4 times, the 2-leaf interval 2 times, and the 4-leaf interval once. Selected plants were destructively harvested prior to commencement of treatments (H0), immediately following cessation of treatments (H1), and at 5 days (H2), 10 days (H3), and 24 days (H4) following H1. Leaf, root, and tiller dry matter yield were determined at each harvest event, as well as tiller number/plant. Levels of water-soluble carbohydrate and nitrogen reserves in plant stubble and roots were determined at each destructive harvest. Initiation and death of daughter tillers were monitored from H0 to the completion of the study. More frequent defoliation of cocksfoot plants resulted in reduced water-soluble carbohydrate assimilation and therefore leaf, root, and tiller dry matter accumulation during the subsequent recovery period. Defoliation at the 1-leaf stage severely limited the regrowth potential of cocksfoot plants, whereas defoliation at the 2-leaf stage was adequate for plant recovery, but did not maximise regrowth. The results of this study showed that a defoliation interval based on the 4-leaf stage maximises water-soluble carbohydrate reserves, tillering, and leaf and root dry matter yields. The priority sequence for allocation of water-soluble carbohydrate reserves followed the order of leaf growth, root growth, and tillering during the regrowth period. Nitrogen energy reserves were found to play a minor role in the regrowth of cocksfoot plants following defoliation.

Publisher

CSIRO Publishing

Subject

General Agricultural and Biological Sciences

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3