Preventing rangeland degradation: a shared problem for Australia and China

Author:

Hodgkinson Kenneth C.,Wang Deli

Abstract

Rangeland degradation continues in Australia, China and elsewhere. The stocking rate/animal production relationship has been a successful concept for pastoralists wanting to avoid degradation and/or raise incomes. However, there are no means available of alerting pastoralists to the approach of critical thresholds that would ‘flip’ rangelands into alternative states when grazing-stressed. Critical threshold forecasting for avoiding degradation (and seizing restoration opportunities) could be made available online. Research has yet to find, assemble and test the set of indicators needed to forecast the approach of critical thresholds envisaged in State-and-Transition thinking. Forecasting at paddock, property and regional scales would have to involve high-performance computing because the thresholds will be space and time dependent. The case for Australia and China to contribute cooperatively to this research effort rests on the large number of contrasting rangeland ecosystems across the two countries that represent rangelands globally. A proven history of past collaboration is extant with existing research programs on plant population dynamics, landscape patchiness/leakiness and soil biota status, and their responses to the separate and combined effects of climate and grazing animals. The road to adoption would involve partnerships with pastoralists throughout the process, remote sensing to identify approaching thresholds in real time, application of high-performance computing and possibly artificial intelligence, and packaging of forecasts for different socio-economic rangeland systems.

Publisher

CSIRO Publishing

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3