Directed chemical dimerisation enhances the antibacterial activity of the antimicrobial peptide MSI-78(4–20)

Author:

Li Rong,Handley Thomas N.G.,Li WenyiORCID,O’Brien-Simpson Neil M.,Hossain Mohammed Akhter,Wade John D.ORCID

Abstract

Antimicrobial resistance (AMR) is on the rise, leading to 700 000 deaths worldwide in 2020. Antimicrobial peptides (AMPs) are antibiotic agents that are active against multi-drug resistant pathogens and also have a reduced risk of AMR development. Previous studies have shown that dimerisation of the proline-rich antibacterial peptide (PrAMP) Chex1–Arg20 can enhance its antimicrobial activity while also reducing its toxicity. To determine if dimerisation via a simple disulfide bond can similarly improve other classes of AMPs, the α-helical cationic peptide MSI-78(4–20) was used as a model. The monomer alone, an S-carboxamidomethyl-capped N-terminal Cys–MSI-78(4–20) analogue and the disulfide-linked dimer were successfully synthesised and their antimicrobial activity and toxicity were determined. It was shown that dimerisation enhanced antimicrobial activity against the Gram-positive opportunistic pathogen Staphylococcus aureus ATCC 29213, the Gram-negative bacteria Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 47615. The peptides showed no significant haemolytic activity with red blood cells and only induced 50% lactate dehydrogenase (LDH) release in mammalian cells at the highest tested concentration, 15 µM. The MSI-78(4–20) dimer was less cytotoxic than the monomer and S-alkyl monomer. Together, the data support the strategy of AMP chemically directed dimerisation as a means of producing potentially more therapeutically useful antimicrobial agents.

Funder

National Health and Medical Research Council

Australian Research Council

Publisher

CSIRO Publishing

Subject

General Chemistry

Reference65 articles.

1. Antimicrobial resistance: A global multifaceted phenomenon.;Pathog Glob Health,2015

2. The whys and wherefores of antibiotic resistance.;Cold Spring Harb Perspect Med,2017

3. Antimicrobial resistance: Risk associated with antibiotic overuse and initiatives to reduce the problem.;Ther Adv Drug Saf,2014

4. Global monitoring of serovar distribution from the world health organization global foodborne infections network country data bank: Results of quality assured laboratories from 2001 to 2007.;Foodborne Pathog Dis,2011

5. O’Neill J. Antimicrobial resistance: Tackling a crisis for the health and wealth of nations. London: Review on Antimicrobial Resistance; 2014. Available at [verified 5 January 2022].

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3