Self-organisation at the whole-plant level: a modelling study

Author:

Yang Zongjian,Midmore David J.

Abstract

Within-plant light and nutrient environments are spatially and temporally heterogeneous. The development of different parts of a plant is highly coordinated, which enables the efficient capture and use of resources in such heterogeneous environments. The physiological mechanisms underlying the correlative control of distantly located plant tissues and organs are still not fully understood. In this study, a mathematical model based on a self-organisation mechanism for resource allocation mediated by polar auxin transport is proposed to explain the origin of correlative effects among shoot branches. In the model, the shoot system of an individual plant is treated as a collection of relatively independent modular subunits competing for root-derived resources. The allocation of root-derived resources to different parts of the shoot is determined by their relative vascular contacts with the root system. The development of the vascular network is specified by the polar transport of auxin produced by various parts of the shoot in response to their immediate internal and external environments. The simulation results show that, by altering the amount of auxin they release individually in response to the local environment and modifying their relative vascular contact with the root system, subunits of a shoot are able to coordinate without a central controller and self-organise into functional and structural patterns such as light foraging and correlative dominance. This modelling study suggests that morphological dynamics at the whole-plant level can be understood as the sum of all modular responses to their local environments. The concept of self-organisation holds great promise for an in-depth understanding of the organisational laws that generate overall plant structure and functions.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3