Detached-petiole inoculation method to evaluate Phytophthora root rot resistance in soybean plants

Author:

Li Yinping,Sun Suli,Zhong Chao,Zhu Zhendong

Abstract

Phytophthora root rot (PRR) caused by Phytophthora sojae, is one of the most destructive soybean diseases. The deployment of resistant cultivars is an important disease management strategy. To this aim, the development of a fast and effective method to evaluate soybean resistance to P. sojae is strategic. In this study, a detached-petiole inoculation technique was developed and its reliability was verified in soybean cultivars and segregant populations for PRR resistance. The detached-petiole and hypocotyl inoculation methods were used to assess the resistance of soybean cultivars, the F2 population of a Zhonghuang47 × Xiu94-11 cross, and the derived F2:3 population. The reactions of 13 analysed cultivars to three P. sojae isolates were consistent between the two inoculation techniques. The reactions of the F2 and F2:3 populations to isolate PsMC1 were 95.20% similar between the two inoculation methods. The segregation of the resistance and susceptibility fit a 3 : 1 ratio. Our results suggest that the detached-petiole technique is a reliable method, and reveal that the PRR resistance in Xiu94-11 is controlled by a single dominant gene. The phenotypic ratios of the tested Jikedou2 × Qichadou1 F2 population using the detached-petiole inoculation technique fit a 3 : 1 ratio (Resistance : Susceptibility). This demonstrated that Qichadou1 contains a single dominant gene conferring resistance to P. sojae. Our new detached-petiole inoculation technique is effective, reliable, non-destructive to the plant, and does not require an excessive amount of seeds. It may be suitable for the largescale screening of soybean resistance to multiple P. sojae isolates.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3