Author:
Maselli Olivia J.,Gascooke Jason R.,Kobelt Sarah L.,Metha Gregory F.,Buntine Mark A.
Abstract
We have measured the rotational energy distribution of benzene molecules both evaporated and desorbed by an IR laser from a liquid microjet. Analysis of the 601 vibronic band of benzene has shown that the benzene molecules evaporating from the liquid microjet surface have a rotational temperature of 157 ± 7 K. In contrast, the rotational temperature of benzene molecules desorbed from the liquid microjet by a 1.9 μm laser pulse is 82 ± 5 K. However, in both cases careful inspection of the spectral profiles shows that the experimental rotational distributions are non-Boltzmann, displaying an underpopulation of high rotational states and a relative overpopulation of the low rotational states. The non-equilibrium evaporation and desorption spectral profiles are consistent with a model that involves transfer of internal energy into translation upon liberation from the condensed phase.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献