Canola yield improvement on the Canadian Prairies from 2000 to 2013

Author:

Morrison M. J.,Harker K. N.,Blackshaw R. E.,Holzapfel C. J.,O'Donovan J. T.

Abstract

During the period from 2000 to 2013, average canola yields from Canadian farms increased from 1330 to 2025 kg ha–1, or 54 kg ha–1 year–1. The objective of this review was to propose likely reasons behind this increase by examining genotypic, environmental and agronomic factors. During this period, hybrid canola cultivars with herbicide tolerance (HY-HT) expanded from 80% to >95% of the area sown to canola. Genetic gain from switching from open-pollinated cultivars to HY-HT cultivars was estimated to account for 32 kg ha–1 year–1. When some key environmental factors were examined, there were no significant linear changes in growing season temperature, although the linear increase in April and May precipitation was significant and likely responsible for an increase of 12 kg ha–1 year–1. When coupled with the yield increase from changes in atmospheric CO2 (3 kg ha–1 year–1), the environment was estimated to account for ~15 kg ha–1 year–1. Ignoring all main-factor interactions, changes due to management accounted for the remainder, or 7 kg ha–1 year–1. The expanded use of HY-HT varieties has resulted in better weed control, and an increase in the use of minimum tillage, leading to greater water-use efficiency and higher yield. It is likely that many of the effects of changes in management were hidden in the interaction with genotype and environment main effects. It is difficult to estimate these interactions without designing experiments to do so. The design and implementation of experiments to understand the interaction among main factors should be a priority. Future yield targets of 25 Mt canola by 2025 will require an increase in yield per ha beyond the current rate, or an increase in the land seeded to canola, or a combination of the two factors. Continued progress with canola yield depends on active plant-breeding programs, agronomic research using new varieties, favourable environmental conditions, and high world commodity prices.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3