Using unsupervised machine learning to identify risk of failure at ageing oil and gas assets

Author:

Manchanda Uday,Pervez Ammar

Abstract

Asset integrity management of ageing oil and gas assets is an ongoing challenge. This paper uses unsupervised algorithms (i.e. clustering technique) to identify carbon steel piping with increased probability of failure due to various internal corrosion mechanisms. The application used over 20 variables including wellhead planktonic bacterial counts, Fe2+ levels, oil and water production rates, historical Non-Destructive Testing (NDT) records, remaining life of downstream equipment, previous remediation data and geographical location data. An unsupervised machine learning clustering algorithm was written grounded in mathematical techniques of Principal Component Analysis (PCA) and k-means clustering. The probabilistic algorithm identified implicit patterns, which were then used to identify critical and non-critical piping clusters. Outputs from the clustering model were used to prioritise field measurements, and while these are ongoing there appears to be a good agreement with model predictions. The paper further discusses the measures that have a higher impact on the classification accuracy of the algorithm.

Publisher

CSIRO Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3