Soil organic matter as influenced by straw management practices and inclusion of grass and clover seed crops in cereal rotations

Author:

Curtin D.,Fraser P. M.

Abstract

In New Zealand, cereal straw has traditionally been burned to facilitate seedbed preparation for the succeeding crop. Because of concerns over the decline of organic matter and the associated deterioration in soil structure, farmers are interested in incorporating crop residues as a means of maintaining organic matter levels. In a 6-year trial on a Wakanui silt loam on the Canterbury Plains, we evaluated the effects of 3 straw management practices (i.e. straw incorporation, burning of straw, and straw removal) on total and labile soil organic matter. A fourth treatment was included to evaluate the local practice of including seed crops (grass and clover) in cereal rotations. The seed crops were grown every second year, the crop sequence being cereal–ryegrass–cereal–clover–cereal–clover. The rate of straw (wheat) decomposition was determined using a litter bag technique, with the bags being buried at a depth of 15 cm for intervals of up to 19 months. In the straw-incorporated treatment, about 25 t/ha of straw (~11 t C/ha) was returned to the soil during the trial. However, there was no significant effect (P > 0.05) of straw management treatments on total soil C (or N), or on labile organic matter pools, although there was a tendency for higher levels of mineralisable C and N where straw was incorporated. Measured straw decomposition rates were consistent with predictions of the Douglas-Rickman residue decomposition model. Under the relatively warm conditions of the Canterbury Plains (thermal time typically >4000 degree-days per year, calculated as the sum of daily degree-days above a base temperature of 0�C), about three-quarters of incorporated straw decomposed within a year. Of the 11 t C/ha of straw-C incorporated, we estimated that only about 1 t C/ha would remain in the soil at the time of sampling. An increase in soil C by this amount would not be detectable (total soil C was about 55 t/ha in the upper 15 cm). Growing seed crops every second year increased several of the labile organic pools (mineralisable C and N, light fraction C and N, microbial biomass) in the 0–7.5 and 7.5 cm soil layers and this may have beneficial effects (e.g. improved N supply) on the succeeding cereal crop. However, the seed crops did not significantly increase total soil organic matter within the 6 years.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3