Net Carbon Exchange Rates of Field-Grown Crops in Relation to Irradiance and Dry Weight Accumulation

Author:

Sale PJM

Abstract

A range of summer and winter vegetable crops has been grown under favourable conditions, and the relation between net carbon exchange and irradiance determined at several stages of growth, using large field assimilation chambers and semi-closed gas analysis systems. For all crops, leaf area index was an important determinant of net carbon exchange rate during early stages of growth, and rates increased markedly from day to day during the period of rapid vegetative development. Except for cauliflower and cucumber, for which leaf area ceased to be so important as the crops developed, maximum rates of CO2 uptake were achieved at maximum leaf areas, and were in excess of 90 mg CO2 dm-2 (ground area) h-1 for sweet corn, about 64 for rockmelon, 50 for broad bean, cauliflower and cabbage, and 45 mg dm-2 h-1 for cucumber. For both rockmelon and cucumber, net carbon exchange rates in the morning were often greater than those at the same irradiances in the afternoon, which suggests partial stomatal closure at about midday. In all crops, variations in temperature of up to 10°C either side of the ambient temperature, imposed at any time during the day, generally had little effect on negative CO2 flux (uptake), but positive CO2 flux at night was strongly influenced by temperature. In cucurbits uptake was reduced at temperatures above 35°C, but rapidly recovered when the temperature was again lowered. High growth rates were achieved by all crops for most months of the year, and the efficiency of utilization of incident energy was also high compared with other reported values. However, growth rates were not related to the maximum rates of CO2 uptake in the day, for net carbon exchange over each 24 h depended also on factors such as the ratio between day- and nightlength and night temperatures.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3