A rainfall simulation study on the relationships between soil test P versus dissolved and potentially bioavailable particulate phosphorus forms in runoff

Author:

UUSITALO R.,AURA E.

Abstract

Runoff from clayey soils often contains abundant particulate phoshorus (PP), part of which may solubilize in surface waters. Monitoring losses of potentially bioavailable forms of PP is expensive, calling for other ways to predict them. Such predictions could be based on soil loss and available soil P indices, e.g., agronomic P status. To study correlations between P pools in runoff versus soil P saturation (by Mehlich 3 extraction; DPSM3) and acetate soil test P (PAc), 15 clayey soils of south Finland were subjected to laboratory rainfall simulation. Runoff from these simulations was analyzed for concentrations of suspended soil (TSS), dissolved molybdate-reactive P (DRP), total P (TP), and, as normalized to soil loss, potentially bioavailable forms of PP: desorbable (anion exchange resin-extractable, AER-PP/TSS) and redox-labile PP (bicarbonate- dithionite-extractable, BD-PP/TSS). Correlation coefficients (r2) between DPSM3 and DRP, AER-PP/ TSS, and BD-PP/TSS equaled 0.92, 0.77, and 0.45, respectively. Runoff P forms were also correlated to soil PAc with r2 values of 0.84, 0.56, and 0.58 for DRP, AER-PP/TSS, and BD-PP/TSS, respectively. Prediction of soil loss-normalized concentrations of potentially bioavailable PP by the agronomic PAc test was considered possible. However, such predictions have a high degree of uncertainty, evidenced by comparison to published field data. Acceptably accurate predictive equations would require a large material as a basis for their construction, and soils should probably also be grouped according to other soil properties that would account for variation in P sorption capacity.;

Publisher

Agricultural and Food Science

Subject

Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3