Optimization of the biological valve appliance prosthetic heart valve

Author:

Ovcharenko E. A.1ORCID,Onishchenko P. S.1ORCID,Klyshnikov K. Yu.1ORCID

Affiliation:

1. Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”

Abstract

Highlights. With the use of numerical optimization algorithms, it is possible to qualitatively improve the performance (closing) of the leaflet apparatus of the heart valve prosthesis. Changing the length of the free edge of the lealflet of the prosthesis does not reduce the von Misess stress amplitude and does not change the nature of its distribution on the diagrams.Aim. Numerical study of the stress-strain state of a clinical heart valve prosthesis from the point of view of the impact of physiological loads and determination of ways to optimize the geometry of the biological leaflet apparatus.Methods. The object of study was a three-dimensional model of the UniLine (NeoCor, Russia) clinical prosthesis of the heart valve, size 23 mm, as well as four modifications focused on changing the length of the free edge. The study was carried out using the finite element method with imitation of the full cycle of operation of the leaflet apparatus under physiological conditions (pressure, heart rate). The parameters for the analysis were the qualitative and quantitative characteristics of the stress-strain state of the work of the five studied geometries.Results. It is shown that high stress areas are concentrated in two zones peripheral and free edges, regardless of the geometry. However, quantitatively, the von Mises stress amplitudes differed between the studied models. For example, the leaf shape, conventionally designated as “–10” degrees, demonstrated the smallest amplitude of this indicator relative to the original unmodified leaf model, thus reducing by a maximum of 18.8%. However, for the closed state, this model, on the contrary, showed an increase in the voltage index relative to the initial one by 8.3%. Other modification options showed similar trends.Conclusion. It is shown that despite the initial premise for optimizing the leaflet apparatus – reducing the length of the free edge and eliminating deformations of the closed state, the proposed geometry options did not significantly change the stress distribution map in the material, and also did not allow to significantly reduce the amplitudes of this parameter. Presumably, options for modifying the geometry and/or properties (rigidity, mobility) of another important component of the bioprosthesis, the support frame, which, in addition to the bearing function, provides damping of the hydrodynamic impact on the leaf due to some of its mobility, may become more promising.

Publisher

NII KPSSZ

Subject

Cardiology and Cardiovascular Medicine,Critical Care and Intensive Care Medicine,Rehabilitation,Emergency Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3