Weed Identification Using Convolution Neural Networks

Author:

B Murali Krishna

Abstract

Deep learning is the core component of the machine learning field which employs knowledge representation for learning. Learning can be supervised or unsupervised. More deep learning techniques can be used which will contain deep belief, deep neural, recurrent neural networks in it which will be used in many fields. The most commonly used applications in deep learning are vision, audio, video, language processing, social media, medical, gaming and there are so many other programs where this deep learning has already produced very perfect results when compared to other cases and in a very little number of cases with superior to experts i.e. humans. Techno Agriculture is the domain where the farmers will get benefited from these latest improvements in the expert system. One of main objectives is that in order to remove weeds or unwanted plants by reduction in the usage of herbicides and to decrease the pollution in both crop and water. One of the Neural Networks i.e. CNN uses a flexible layer with the function of a ReLU to extract image elements and then uses a high-resolution and fully integrated RELU layer to separate weeds from the plant. The image which was processed previously is used on the convolution neural network which in return gives an image from the Region of Interest (ROI) from where it will extract the image and remove the certain aspects of the image in the training phase, after the training a splitting operation will be performed and the weeds are therefore classified by using the deep learning technique. In this scenario we trained 100 images in order to increase the accuracy of the model.

Publisher

IOR Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3