Characterization and Applications of Non-Magnetic Rotating Gliding Arc Reactors - A Brief Review

Author:

J Ananthanarasimhan,Lakshminarayana Rao ,Anand M Shivapuji ,S Dasappa

Abstract

Gliding arc discharge (GAD) reactors are known for high energy efficiency and good chemical selectivity compared to non-thermal plasmas such as glow discharge, corona and dielectric barrier discharge. Reported literature identified that planar diverging GAD have non-uniform gas treatment (e.g. only 20% of gas processed by plasma depending on electrode configuration). Further requirement of minimum limit gas velocity to drag the arc results in lower gas residence time. This paper attempts to investigate the GAD performance and preliminary studies to overcome some of the identified drawbacks, by using only fluid mechanics without magnetic field (rotating gliding arc (RGA)) inside the plasma reactor developed in various research laboratories. This article discusses the applications of GAD and also focuses on bringing out the performance and comparing with the results from the existing non-magnetic rotating gliding arc reactors. The paper also summarizes results from literature in such reactor designs.

Publisher

IOR Press

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Plasma Treatment of Liquids;Innovative Food Processing Technologies;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3