Author:
J Ananthanarasimhan,Lakshminarayana Rao ,Anand M Shivapuji ,S Dasappa
Abstract
Gliding arc discharge (GAD) reactors are known for high energy efficiency and good chemical selectivity compared to non-thermal plasmas such as glow discharge, corona and dielectric barrier discharge. Reported literature identified that planar diverging GAD have non-uniform gas treatment (e.g. only 20% of gas processed by plasma depending on electrode configuration). Further requirement of minimum limit gas velocity to drag the arc results in lower gas residence time.
This paper attempts to investigate the GAD performance and preliminary studies to overcome some of the identified drawbacks, by using only fluid mechanics without magnetic field (rotating gliding arc (RGA)) inside the plasma reactor developed in various research laboratories. This article discusses the applications of GAD and also focuses on bringing out the performance and comparing with the results from the existing non-magnetic rotating gliding arc reactors. The paper also summarizes results from literature in such reactor designs.
Reference35 articles.
1. A. Fridman, Plasma Chemistry, Cambridge University Press, (2008)
2. J. Meichsner, M. Schmidt, R. Schneider and H.E. Wagner Nonthermal Plasma Chemistry and Physics, CRC Press (2013)
3. C.S. Kalra, Y.I. Cho, A. Gutsol and A. Fridman, Gliding arc in tornado using a reverse vortex flow, Rev. Sci. Instrum. 76 (2005)
4. H. Zhang, F. Zhu, X. Li and C. Du, Dynamic behavior of a rotating gliding arc plasma in nitrogen: Effects of gas flow rate and operating current Plasma, Sci. Technol. 19 (2017) 045401.
5. S. Liu, D. Mei, L. Wang and X. Tu, Steam reforming of toluene as biomass tar model compound in a gliding arc discharge reactor, Chem. Eng. J. 307 (2017) 793–802.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Plasma Treatment of Liquids;Innovative Food Processing Technologies;2021