Vibration Control Of Steel Frames Using Magnetorheological Dampers: A New Control Algorithm.

Author:

G.K. Arunvivek,R Saravanakumar

Abstract

Control technologies application to steel structure is mainly anticipated to enhance the structural performance against natural hazards. In particular smart base isolation system connected with semi-active isolator at the base with controllable semi devices gaining impulse for its efficiency and economic reasons. Generally the development of control design strategies through system dynamics concept had not been considered entirely for structural applications. Structural characteristics which help to divulge structural properties, hitherto flout by civil engineering circle are assimilated with control techniques to construct indices in modal and nodal coordinates for the endurance of the control action to utilize their fullest capabilities. In this study, an isolated 3D steel frame model is developed.  Magneto-Rheological dampers are fixed with 3D steel frame model which act as a smart control device. Besides, Force transducers and Piezoresistive Actuator in tandem with Deltatron conditioning amplifier are also used. Presently many techniques are employed for the optimum placement of actuators and sensors in vibration control systems. The concept of controllability-observability is used in these methods. The specific relationship between the vibration modes and controllability-observability simplifies this approach. This study envisaged the compatibility of force transducers along with triaxial and uniaxial accelerometers fixed at various trial spots on the model structure to quantify the damping force and absolute accelerations of the structure and the dampers individually, positioned in the system, against the excitation of the structure.

Publisher

IOR Press

Subject

General Medicine

Reference13 articles.

1. H.L. Hsu and H. Halim, Improving seismic performance of framed structures with steel curved Dampers, Eng. Stru., 130 (2017) 99–111.

2. Jinkoo Kim and Hyungjun Shin, Seismic loss assessment of a structure retrofitted with slit-friction hybrid Dampers, Eng. Stru. 130 (2017) 336–350.

3. R.M. Hessabi and O. Mercan, Investigations of the application of gyro-mass dampers with various types of supplemental dampers for vibration control of building structures, Eng. Stru. 126 (2016)174–186.

4. J. Kim and S. Kim, Performance-based seismic design of staggered truss frames with friction dampers, Thin-Walled Stru., 111 (2017) 197–209.

5. K. Moon Kwak, and Dong-Ho Yang, Dynamic modelling and active vibration control of a submerged rectangular plate equipped with piezoelectric sensors and actuators, J. Fluid. Struct., 54 (2015) 848–867.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3