Mining Techniques For Invariants In Cloud Computing

Author:

K Sadhika

Abstract

The increasing popularity of Software as a Service (SaaS) stresses the need of solutions to predict failures and avoid service interruptions, which invariably result in SLA violations and severe loss of revenue. A promising approach to continuously monitor the correct functioning of the system is to check the execution conformance to a set of invariants, i.e., properties that must hold when the system is deemed to run correctly. This paper proposes a technique to spot a true anomalies by the use of various data mining techniques like clustering, association rule and decision tree algorithms help in finding the hidden and previously unknown information from the database. We assess the techniques in two invariants’ applications, namely executions characterization and anomaly detection, using the metrics of coverage, recall and precision. In this work two real-world datasets have been used - the publicly available Google datacenter dataset and a dataset of a commercial SaaS utility computing platform - for detecting the anomalies.

Publisher

IOR Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3