Alternative Splicing in Pancreatic Ductal Adenocarcinoma Leads to Dysregulated Immune System

Author:

Jabbar Fatimah A. Abdul,AlChalabi Rawaa,AL-Tarboolee Ahmed Yaseen,Shaban Semaa A.,Suleiman Ahmed AbdulJabbar

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy that poses a significant global health threat, marked by a substantial increase in prevalence and mortality rates. Accounting for 90 % of pancreatic cancer cases, PDAC carries a dismal prognosis, and current therapeutic approaches, including immunotherapy, face challenges due to poor immunogenicity. This study aimed to discover differentially expressed immune genes shared between PDAC and normal samples from two datasets obtained from the NCBI GEO Dataset. The RNA-seq pipeline was employed for gene expression analysis, and enrichR facilitated functional enrichment analysis of biologically and statistically significant genes. Predictions of immune infiltration cells and corresponding genes, along with their immune responses, were made using the ScType database and the immunedeconv package, respectively. Verification of gene expression levels was conducted through GEPIA2, Expression Atlas, and literature review. Additionally, isoform-switching analysis of dysregulated genes aimed to uncover alternatively spliced pathogenic isoforms in PDAC. Notably, four immune genes (EPHA2 upregulated, GNG11, CRHBP, and FCER1A downregulated) were found to be common in both datasets and were highly implicated in PDAC. The dysregulated immune genes influenced molecular functions, including protein binding, transmembrane receptor protein tyrosine kinase activity, protein tyrosine kinase activity, and cadherin binding for upregulated genes. Downregulated genes were associated with GTPase activity and ribonucleoside triphosphate phosphatase activity. This study suggests these immune genes as potential prognostic biomarkers for effective PDAC treatment. However, further investigations are essential to unravel the functional perspectives of potential isoforms.

Publisher

Institute of Mathematical Problems of Biology of RAS (IMPB RAS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3