Mathematical Model of Closed Microecosystem “Algae – Heterotrophic Bacteria”

Author:

Zalizniak V.E.,Zolotov O.A.

Abstract

Model of closed microecosystem “algae - heterotrophic bacteria” is proposed in this paper. Mathematical model is the Cauchy problem for system of nonlinear ordinary differential equations. To develop the model the Liebig’s law of the minimum is consistently used for both specific rate of biomass growth and specific death rate of algae and bacteria cells. To describe the specific rate of substrate utilization by algae and bacteria the Andrew’s model (substrate inhibition) is used. It is assumed that specific death rate of algae and bacteria cells increases with decreasing substrate concentration. It is also assumed that carbon and nitrogen are main biogenic elements, and in the system they are in the form of mineral substrate (CO2, NO2, NO3, NH4) and biological substrate (proteins, lipids and carbohydrates). Mathematical model describing time variations in concentration of elements of microecosystem is formulated under the following assumptions: 1) stoichiometric coefficients of algae and bacteria cells are constant in the development of microecosystem; 2) utilization of carbon and nitrogen by algae and bacteria occurs independently; 3) oxygen produced by algae cells during photosynthesis completely covers the demand for oxygen for algae and bacteria cells. To verify the proposed model experimental data for microecosystems «Clorella vulgaris – Pseudomonas sp.» и «Scenedesmus obliquus – Pseudomonas sp.» are used. These systems were studied in laboratory conditions, and concentrations of elements of microecosystems in stationary state were obtained. Parameters of functions describing specific rate of utilization of biogenic elements were derived from experimental data for growth kinetics of algae and bacteria. Concentration of the biomass in stationary state obtained with the use of the proposed model is in reasonable agreement with experimental data.

Publisher

Institute of Mathematical Problems of Biology of RAS (IMPB RAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3