Assembly of a Phenylalanine Nanotube by the use of Molecular Dynamics Manipulator

Author:

Likhachev I.V.,Bystrov V.S.

Abstract

Studies of the processes of self-organization and self-assembly of various complexly organized (including spiral) structures based on amino acids intensively carried out in recent years. Various methods of molecular modeling, including molecular dynamics (MD) methods, are developed. In this paper, we propose a new approach for a relatively simple technique for conducting MD simulation (MDS) of various molecular nanostructures, determining the trajectory of the MD run and forming the final structure: a molecular dynamic manipulator (MD manipulator). It is an imitation of the operation of an existing or imaginary device or structure by applying force to the existing initial structure in order to obtain a new final structure, having the same chemical composition, but with a different geometry (topology). The PUMA-CUDA software package was applied as the main MD modeling program, which uses the physics of the PUMA software package, developed by the laboratory headed by N.K. Balabaev. Using this MDS tool, you can investigate the formation of helical structures from a linear sequence of any amino acids variation. As an example, the applicability of the developed algorithm for assembling nanotubes from linear phenylalanine (Phe) chains of different chirality (left L-Phe and right D-Phe) is considered by including additional force effects in the molecular dynamics simulation program for these structures. During the MD run, the applied actions, which are the same for the left and right helices of the formed nanotubes, lead the system to an α-helix structure. The work was carried out in an interactive mode using a number of additional programs, incl. trajectory analyzer program MD (TAMD). As a result, the modes that are most adequate for the formation of nanotubes of the right chirality D from the initial L-Phe monomer and nanotubes of the left chirality L from the D-Phe amino acid monomer were determined. The results obtained were compared with data from other works on modeling similar nanotubes of different chirality and experimental data. These are fully in line with the law of change in sign of chirality of molecular structures with complication of their hierarchical level of organization. The molecular animation of the assembly of a left-chiral nanotube from D-monomers is freely available at: http://lmd.impb.ru/Supplementary/PHE.avi.

Publisher

Institute of Mathematical Problems of Biology of RAS (IMPB RAS)

Subject

Applied Mathematics,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3