Dynamics of an Epidemic Model under the Influence of Environmental Stress

Author:

Saha Sangeeta,Samanta Guruprasad

Abstract

We have considered a compartmental epidemiological model with infectious disease to observe the influence of environmental stress on disease transmission. The proposed model is well-defined as the population at each compartment remains positive and bounded with time. Dynamical behaviour of the model is observed by the stability and bifurcation analysis at the equilibrium points. Also, numerical simulation supports the theoretical proofs and the result shows that the system undergoes a forward bifurcation around the disease-free equilibrium. Our results indicate that with the increase of environmental pollution, the overall infected population increases. Also, the disease transmission rate among the susceptible and stressed population from asymptomatically infected individuals plays a crucial role to make a system endemic. A corresponding optimal control problem has also been proposed to control the disease prevalence as well as to minimize the cost by choosing the vaccination policy before being infected and treatment policy to the infected as control variables. Numerical figures indicate that the vaccination provided to susceptible needs some time to reduce the disease transmission but the vaccination provided to stressed individuals works immediately after implementation. The treatment policy for symptomatically infected individuals works with a higher rate at an earlier stage but the intensity decreases with time. Simultaneous implementation of all control interventions is more useful to reduce the size of overall infective individuals and also to minimize the economic burden. Hence, this research clearly expresses the impact of environmental pollution (specifically the influence of environmental stress) on the disease transmission in the population.

Publisher

Institute of Mathematical Problems of Biology of RAS (IMPB RAS)

Subject

Applied Mathematics,Biomedical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3