Author:
Astakhova T.Yu.,Vinogradov G.A.
Abstract
A one-electron model is proposed to describe a polaron on a dimerized polyacetylene lattice. Within the framework of the formulated model, the dynamics of a freely moving polaron is considered. The results obtained are compared with the many-electron model that takes into account all π-electrons of the valence band. Polaron can move at subsonic and supersonic speeds. The subsonic polaron is stable. A supersonic polaron loses stability at times ∼ 6 000 fs. A supersonic polaron has a forbidden speed range. An analytical solution to the continual approximation helps to understand the reason for the existence of forbidden speeds. The dynamics of a free polaron is similar to the dynamics of a polaron in an electric field. The proposed one-electron approximation significantly expands the possibilities of numerical simulation in comparison with the traditional many-electron model.
Publisher
Institute of Mathematical Problems of Biology of RAS (IMPB RAS)
Subject
Applied Mathematics,Biomedical Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献