Regulation of Organism's Antiviral Immune Response: Mathematical Model, Qualitative Analysis, Results

Author:

Trusov P.V.,Zaitseva N.V.,Chigvintsev V.M.,Lanin D.V.

Abstract

To know the processes occurring in the neuroendocrine and immune system, the complex and branching regulation mechanisms should be taken into account. Most of the studies in this area are dedicated to the biological and mathematical description of individual parts of the regulatory mechanisms, and it greatly facilitates the understanding of the phenomena being studied. But there is a lack of comprehensive description of the processes and internal communications. In the present article, a mathematical model for describing the antiviral immune response is considered taking into account the interacting regulatory influences of the immune and neuroendocrine systems. To describe the innate immunity, the proposed model uses parameters reflecting quantitative measures of the interferon concentration (the inductor of resistance to the infection of target organ cells) and NK-cells (responsible for removing of the infected cells). The simulation of acquired immunity is performed using parameters characterizing the concentration of virus-specific cytotoxic T cells and antibody-forming B lymphocytes. The regulatory mechanisms considered in the model cover the influence of the hypothalamic-pituitary-adrenal axis and the populations of the T-helper cells. The model is developed within the framework of the concept of a multi-level model of the human body, taking into account the interactions between systems and the functional state of the organs included in the review. The model also takes into account the spatial organization of immune and infectious processes in various organs and tissues, for which the delay time of interaction of the components is introduced. The model includes a system of 18 ordinary differential equations with a delayed argument, the parameters of which characterize the rates of various processes that affect the dynamics of infection. The parameters are identified according to published experimental data describing the process of infection of the body with a virus. The dynamics of the immune and neuroendocrine systems under viral infection was calculated, taking into account the disturbance of the synthetic function of the bone marrow. The study provides a qualitative picture of the biological factors that can explain the kinetics of the development of a viral infection.

Publisher

Institute of Mathematical Problems of Biology of RAS (IMPB RAS)

Subject

Applied Mathematics,Biomedical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3