The Peculiarities of Charge Motion in the Molecular Polynucleotide Chains of Finite Length. The Rapid Formation of a Moving Polaron State

Author:

Korshunova A.N.,Lakhno V.D.

Abstract

The numerical experiments which demonstrate the possibility of charge transfer in a homogeneous G/C DNA chain in the absence of an electric field have been carried out. As a model, which describes the dynamics of a DNA molecule, was considered the nonlinear Peyrard-Bishop-Dauxois-Holstein model. It is commonly supposed that the main electric current carrier in homogeneous synthetic polynucleotide chains is the polaron. We have previously studied the peculiarities of polaron motion in molecular polynucleotide chains of finite length. It was shown that a polaron placed at the initial moment of time not in the center of the chain acquires the ability to move in the absence of an electric field and in the absence of any additional excitations in the chain. The numerical experiments which demonstrate the possibility of polaron charge transfer in a homogeneous finite unclosed G/C DNA chain due to the interaction with localized excitations have been carried out in the absence of an electric field. In this study, at the initial moment of time, a polaron is not added to the chain, but a charge localized in the region of a certain number of neighboring sites displaced from the equilibrium positions. The motion of the charge in the chain is caused by choice of these specified initial conditions, which ensure the rapid formation of the polaron state and, as a consequence, charge transfer along the chain. For the assignment of the external nonlinear excitations, we used nonzero values of the displacements of particles and/or their velocities at the initial instant of time. Non-zero values of chain sites velocities at the initial time were used to stimulate the motion of the charge. It is shown that for the rapid formation of the polaron state, the initial conditions must correspond to the parameters of the polaron, which is formed in the chain under the chosen parameters. It is shown that, depending on the parameters of the chain and on the parameters of the selected initial conditions, the charge can be transferred along the chain over long distances.

Publisher

Institute of Mathematical Problems of Biology of RAS (IMPB RAS)

Subject

Applied Mathematics,Biomedical Engineering

Reference34 articles.

1. DNA nanobioelectronics

2. Nanobioelectronics - for Electronics, Biology and Medicine. Eds. Offenhausser A.R. Rinaldi. New York: Springer, 2009.

3. Colloquium: The quest for high-conductance DNA

4. DNA electronics

5. Charge Transport in DNA-Based Devices

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3