Phase Multistability of Dynamics Modes of the Ricker Model with Periodic Malthusian Parameter

Author:

Shlufman K.V.,Neverova G.P.,Frisman E.Ya.

Abstract

The paper investigates the phase multistability of dynamical modes of the Ricker model with 2-year periodic Malthusian parameter. It is shown that both the variable perturbation and the phase shift of the Malthusian parameter can lead to a phase shift or a change in the dynamic mode observed. The possibility of switches between different dynamic modes is due to multistability, since the model has two different stable 2-cycles. The first stable 2-cycle is the result of transcritical bifurcation and is synchronous to the oscillations of the Malthusian parameter. The second stable 2-cycle arises as a result of the tangent bifurcation and is asynchronous to the oscillations of the Malthusian parameter. This indicates that two-year fluctuations in the population size can be both synchronous and asynchronous to the fluctuations in the environment. The phase shift of the Malthusian parameter causes a phase shift in the stable 4-cycle of the first bifurcation series to one or even three elements of the 4-cycle. The phase shift to two elements of this 4-cycle is possible due to a change in the half-amplitude of the Malthusian parameter oscillation or the variable perturbation. At the same time, the longer period of the cycle, the more phases with their attraction basins it has, and the smaller the threshold values above which shift from the attraction basin to another one occur. As a result, in the case of cycles with long period (for example, 8-cycle) perturbations, that stable cycles with short period are able to "absorb", can cause different phase transitions, which significantly complicates the dynamics of the model trajectory and, as a consequence, the identification of the dynamic mode observed.

Publisher

Institute of Mathematical Problems of Biology of RAS (IMPB RAS)

Subject

Applied Mathematics,Biomedical Engineering

Reference40 articles.

1. Anishchenko V.S., Astakhov V.V., Nikolaev V.V., Shabunin A.V. Chaotic synchronization in a network of symmetrically coupled oscillators. Journal of Communications Technology and Electronics. 2000;45(2):179-185.

2. Bezruchko B.P., Prokhorov M.D., Seleznev Ye.P. Oscillation types, multistability, and basins of attractors in symmetrically coupled period-doubling systems. Izvestiya VUZ. Applied Nonlinear Dynamics. 2002;10(4):47-67 (in Rus.).

3. Smirnov D.A., Sidak Е.V., Bezruchko B.P. Statistical properties of phase synchronization coefficient estimator. Izvestiya VUZ. Applied Nonlinear Dynamics. 2008;16(2):111-121 (in Rus.).

4. Koblyanskiy S, Shabunin A., Astakhov V. Forced synchronization of periodic oscillations in a system with phase multistability. Nelineinaya Dinamika (Russian Journal of Nonlinear Dynamics). 2010;6(2):277-289.

5. Kuznetsov A.P., Savin A.V., Sedova Y.V., Tyuryukina L.V. Bifurcation of Images. Saratov: Press Center Ltd “Nauka”, 2012. 196 p. (in Rus.).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3