Cleaning Data Sets with Diagnostic Errors in the High-Dimensional Feature Spaces

Author:

Borisova I.A.,Kutnenko O.A.

Abstract

The paper proposes a new approach in data censoring, which allows correcting diagnostic errors in the data sets in case when these samples are described in high-dimensional feature spaces. Considering this case as a separate task is explained by the fact that in high-dimensional spaces most of the methods of outliers detection and data filtering, both statistical and metric, stop working. At the same time, for the tasks of medical diagnostics, given the complexity of the objects and phenomena studied, a large number of descriptive characteristics are the norm rather than the exception. To solve this problem, an approach that focuses on local similarity between objects belonging to the same class and uses the function of rival similarity (FRiS function) as a measure of similarity has been proposed. In this approach for efficient data cleaning from misclassified objects, the most informative and relevant low-dimensional feature subspace is selected, in which the separability of classes after their correction will be maximal. Class separability here means the similarity of objects of one class to each other and their dissimilarity to objects of another class. Cleaning data from class errors can consist both in their correction and removing the objects-outliers from the data set. The described method was implemented as a FRiS-LCFS algorithm (FRiS Local Censoring with Feature Selection) and tested on model and real biomedical problems, including the problem of diagnosing prostate cancer based on DNA microarray analysis. The developed algorithm showed its competitiveness in comparison with the standard methods for filtering data in high-dimensional spaces.

Publisher

Institute of Mathematical Problems of Biology of RAS (IMPB RAS)

Subject

Applied Mathematics,Biomedical Engineering

Reference23 articles.

1. Introduction to Statistical Data Editing and Imputation

2. Barnett V., Lewis T. Outliers in Statistical Data. Chichester: John Wiley and Sons; 1994. 584 p.

3. Best Practices in Data Cleaning: A Complete Guide to Everything You Need to Do Before and After Collecting Your Data

4. Luca Greco. Robust Methods for Data Reduction Alessio Farcomeni. Chapman and Hall/CRC; 2015. 297 p.

5. Teng C.M. A comparison of noise handling techniques. In: Proceedings of the Fourteenth International Florida Artificial Intelligence Research Society Conference. 2001. P. 269–273.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3