Linkage Disequilibrium in Targeted Sequencing

Author:

Romanov Dmitriy,Skoblikow Nikolai

Abstract

We propose an approach for optimizing the development of gene diagnostic panels, which is based on the construction of non-equilibrium linkage maps. In the process of gene selection we essentially use genome-wide association analysis (GWAS). Whole-genome analysis of associations makes it possible to reveal the relationship of genomic variants with the studied phenotype. However, the nucleotide variants that showed the highest degree of association can only be statistically associated with the phenotype, not being the true cause of the phenotype. In this case, they may be in the block of linked inheritance with nucleotide variants that really affect the manifestation of the phenotype. The construction of maps of non-equilibrium linkage of nucleotides makes it possible to optimally determine the boundaries of linkage blocks, in which the desired variants fall. The aim of this study was to optimize the demarcation of genomic loci to create targeted panels aimed at predicting susceptibility to SARS-CoV-2 and the severity of COVID-19. The proposed method for selecting loci for a target panel, taking into account nonequilibrium linkage, makes it possible to use the phenomenon of nonequilibrium linkage in order to maximally cover the regions involved in the development of the phenotype, while simultaneously minimizing the length of these regions, and, at the same time, the cost of sequencing.

Publisher

Institute of Mathematical Problems of Biology of RAS (IMPB RAS)

Subject

Applied Mathematics,Biomedical Engineering

Reference34 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3