Conserved Peptides Recognition by Ensemble of Neural Networks for Mining Protein Data – LPMO Case Study

Author:

Dotsenko G.S.,Dotsenko A.S.

Abstract

Mining protein data is a recent promising area of modern bioinformatics. In this work, we suggested a novel approach for mining protein data – conserved peptides recognition by ensemble of neural networks (CPRENN). This approach was applied for mining lytic polysaccharide monooxygenases (LPMOs) in 19 ascomycete, 18 basidiomycete, and 18 bacterial proteomes. LPMOs are recently discovered enzymes and their mining is of high relevance for biotechnology of lignocellulosic materials. CPRENN was compared with two conventional bioinformatic methods for mining protein data – profile hidden Markov models (HMMs) search (HMMER program) and peptide pattern recognition (PPR program combined with Hotpep application). The maximum number of hypothetical LPMO amino acid sequences was discovered by HMMER. Profile HMMs search proved to be more sensitive method for mining LPMOs than conserved peptides recognition. Totally, CPRENN found 76 %, 67 %, and 65 % of hypothetical ascomycete, basidiomycete, and bacterial LPMOs discovered by HMMER, respectively. For AA9, AA10, and AA11 families which contain the major part of all LPMOs in the carbohydrate-active enzymes database (CAZy), CPRENN and PPR + Hotpep found 69–98 % and 62–95 % of amino acid sequences discovered by HMMER, respectively. In contrast with PPR + Hotpep, CPRENN possessed perfect precision and provided more complete mining of basidiomycete and bacterial LPMOs.

Publisher

Institute of Mathematical Problems of Biology of RAS (IMPB RAS)

Subject

Applied Mathematics,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3