In-silico Elucidation of the Role of ABC-Transporter Genes Expression Regulation by OncomiRs (miR-21, miR-15, and miR-let-7) in Drug Efflux and Chemoresistance in Breast Cancer

Author:

Khalaf Ban Hamid,Suleiman Ahmed AbdulJabbar,Suwaid Mohammed A.

Abstract

Breast cancer is the most common and aggressive malignancy in females with a high prevalence rate of 77.9 million worldwide. Chemotherapy and tyrosine kinase inhibitors have been used to treat invasive and malignant tumors; however, invasive tumors have showed resistance to conventional therapies. ABC transporters play a crucial role in breast cancer due to their chemo-resistance and drug efflux abilities. Additionally, chemo-resistant roles of ABC transporters have been reported in several cancers such as cervical cancer, colon cancer, esophageal squamous cell carcinoma, glioma and HCC. The goal of this study was to identify the tumor suppressor role of miR-21, miR-15 and miR-let-7 to chemo-resistant genes majorly ABCA1, ABCB1 and ABCC1 in breast cancer. TargetScan, miRWalk, and miRDB were employed to predict microRNA-mRNA interactions. MC-Sym and RNAComposer were utilized for the tertiary structure prediction of shortlisted miRNAs and mRNAs. For molecular docking and visualization, HDOCK and PyMOL were employed. The present study identified 10, 7 and 13 interactions between microRNAs (miR-21, miR-15, and miR-let-7) and oncogenes (ABCA1, ABCB1, ABCC1) through miRWalk, miRDB and TargetScan respectively. RNA22 predicted the binding sites of microRNAs such as 22 miR-21, 11 miR-15 and 58 miR-let-7 on ABCA1, ABCB1 and ABCC1, respectively. Out of multiple docked complexes, the top 3 were shortlisted for visualization based on maximum confidence score and least binding affinity. The present study identifies the interactions of two novel (miR-15a-5p and let-7c-5p) microRNAs with ABCA1, ABCB1 and ABCC1 regions due to their maximum interactions. The findings of this research may help in developing miRNA drugs that could target ABC transporters specifically ABCA1, ABCB1 and ABCC1 to inhibit increased drug efflux and chemoresistance in breast cancer.

Publisher

Institute of Mathematical Problems of Biology of RAS (IMPB RAS)

Subject

Applied Mathematics,Biomedical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A glimpse into let-7e roles in human disorders; friend or foe?;Pathology - Research and Practice;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3