Компьютерные исследования наноструктур гидроксиапатита, их особенности и свойства

Author:

Быстров В.С.,Bystrov V.S.

Abstract

In this review paper the main approaches to modeling the hydroxyapatite (HAP) structures and first-principle calculations of their properties, pure and with various defects, are considered. First, the HAP nano-particles (NPs) and clusters peculiarities are described using different methods: molecular mechanical and quantum mechanical, especially semi-empirical such as PM3. Both approximations used here, namely, restricted Hartee-Fock (RHF) and unrestricted Hartee-Fock (UHF), are considered. The influence of the protons (hydrogens), contained in the surrounding medium (pH), on the formation of HAP nanoparticles of various sizes and shapes is considered and discussed. Second, the HAP crystal unit cells studies are considered on the basis of a density functional theory (DFT) modelling. The main peculiarities of both phases (hexagonal and monoclinic) are considered too, including their ordered and disordered substructures. One of the important aspects of the computer modeling of HAP is to build the models and consider various structural modifications of HAP (such as, vacancies of oxygen atoms and hydroxyl OH group, hydrogen interstitials and different substitutions of atoms in HAP unit cell), which allow explicitly creating and exploring the changes in the charges of HAP and the electrical potential on the HAP surface. HAP modifications are most close to biological HAP and therefore are necessary for implant medical applications and can create and functionalize HAP surface with most adhesive properties for living cells (osteoblasts, osteoclatst). This improves the HAP implant quality. Besides, it has recently been established that oxygen vacancy in HAP influences their photo-catalytic properties. It is important for HAP usage as in environmental remediation and for bacteria inactivation. Therefore it is very important to create and investigate the oxygen vacancy models in HAP, and others defects models. In this work we review a DFT modelling and studies of HAP, both pure perfect bulk and imperfect bulk cases. Special HAP modelling approaches are used for layered slab super-cells units, which include vacuum spaces between the layered slabs forming HAP surface. To all these computer studies the first principle calculations were applied. In this review various DFT approximations are analysed for bulk and surface modified HAP. These approximations are carried out using both the local basis (local density approximation – LDA, in AIMPRO codes) and the plane-waves (generalized gradient approximation – GGA, in VASP codes). Data of all structures and models of HAP defects investigated are widely analyzed.

Publisher

Institute of Mathematical Problems of Biology of RAS (IMPB RAS)

Subject

Applied Mathematics,Biomedical Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3