SOIL MYCOFLORA OF BLACK PEPPER RHIZOSPHERE IN THE PHILIPPINES AND THEIR IN VITRO ANTAGONISM AGAINST Phytophthora capsici L.

Author:

Noveriza Rita,Quimio Tricita H.

Abstract

Foot rot disease of black pepper caused by Phytophthora capsici had been reported in Batangas and Laguna, Philippines. The plant was recovered following the application of crop residue (organic substrate) and intercropping with other crops. This study was aimed to isolate, identify, and determine the soil mycoflora from the rhizosphere of black pepper grown on various cropping patterns in Batangas and Laguna. Antagonistic activity of mycoflora isolates was tested against P. capsici using dual culture technique. The result showed that 149 colonies of soil mycoflora isolated were belonging to 14 genera; three of them, i.e. Penicillium, Paecilomyces and Aspergillus, were the most dominant. All of the mycoflora isolates were able to inhibit the growth of the pathogen. Eighteen of them were the most promising antagonists, based on their inhibition growth of more than 60%. It is suggested that antagonistic mechanism of Mucor isolate (1001), Trichoderma (125, 170, 171, 179, 180, 181), Gliocladium (109), Cunninghamella (165, 168), Mortierella (177), and Aspergillus (106) was space competitor (competition for nutrient) since they rapidly overgrew the pathogen. Aspergillus (67, 79, 81, 83, 108, and 202) isolates inhibited the pathogen apparently by producing antibiotic, whereas Trichoderma (125, 170, 171, 179, 180, and 181) isolates were able to penetrate the hyphae of the pathogen. The organic matter percentage in the soil was significantly correlated with the number of antagonistic mycoflora in rhizosphere (R2 = 0.1094), but the cropping pattern was negatively correlated. This study suggests that organic matter increased antagonistic mycoflora in black pepper rhizosphere, which will reduce severity of the disease.

Publisher

Indonesian Agency For Agricultural Research and Development (IAARD)

Subject

Soil Science,Agronomy and Crop Science,Animal Science and Zoology,Food Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3