Flow of Ethanol into a Medium with Varying Degrees of Rarefaction

Author:

Yaskin A. S.1ORCID,Zarvin A. E.1ORCID,Kalyada V. V.1ORCID,Dubrovin K. A.1ORCID,Khudozhitkov V. E.1ORCID

Affiliation:

1. Novosibirsk State University

Abstract

Experimental results of observation of ethanol microjets flowing into a highly rarefied medium (vacuum) through a nozzle are presented. The investigation of the outflow process was carried out both horizontally and vertically in the direction of gravity, when the liquid was expelled from the source. The condition of keeping constant the residual background pressure in the vacuum chamber is much lower than the saturated vapour pressure of the working liquid at a given temperature of the blast. The possibility of simulation of complex processes of the flow of micro-liquids in a space with a given rarefied atmosphere on a compact vacuum gas-dynamic test bench is shown. It is found that the continuous efflux from a thin capillary or a hole of small diameter into a vacuum or a strongly rarefied gaseous medium differs significantly from the well-studied modes of efflux into a dense gaseous medium, as well as from the pulse modes of efflux into a vacuum. The paper describes the main features of the flow and the conditions of the instability emergence. It is shown that the long-term flow of a liquid microjet in a vacuum has a high degree of surface instability, with a large number of sudden changes in direction, structure and observed density. An explanation for the causes of microjet failure, caused mainly by a combination of capillary instability and intense evaporation of superheated liquid from the surface of the jet, is proposed. The formation of surface gas caverns causing explosive collapse of the microjet with ejection of vapor-liquid droplets is established.

Publisher

Novosibirsk State University (NSU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3