Experiments to Improve the Efficiency of Obtaining Brass Nanoparticles by Evaporation by a Continuous Beam of High-Energy Electrons

Author:

Khartaeva Е. Ch.1ORCID,Nomoev А. V.1ORCID,Bardakhanov S. P.2ORCID,Zobov К. V.2ORCID,Trufanov D. Yu.3ORCID,Gaponenko V. R.3ORCID,Tsydypov D. G.1ORCID

Affiliation:

1. Institute of Physical Materials Science SB RAS

2. Institute of Physical Materials Science SB RAS; Khristianovich Institute of Theoretical and Applied Mechanics SB RAS

3. Khristianovich Institute of Theoretical and Applied Mechanics SB RAS

Abstract

Composite, copper and zinc containing nanoparticles and brass nanoparticles have been obtained by a high-performance method of evaporation of substances by a relativistic electron beam. The change in the stoichiometry of nanopowders produced by stepwise irradiation of a brass ingot placed in a single-zone graphite crucible is considered. It was found that the production of such particles depends on the concentration of saturated vapors of zinc and copper. A two-zone configuration of the crucible has been developed, which makes it possible to realize the simultaneous evaporation of the constituent components, thereby providing the conditions for the formation of uniform brass nanoparticles with a uniform distribution of elements and a high yield of nanopowder. X-ray diffraction analysis (XRD), Transmission electron microscopy (TEM), Energy dispersive X-ray analysis (EDX) were carried out, and the specific surface of the obtained nanoparticles was determined. The mechanism of formation of composite nanoparticles is discussed.

Publisher

Novosibirsk State University (NSU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3