Developing a Service for Collecting and Analyzing Electives Reviews

Author:

Krivorogov D. D.1,Nizamov T. D.1,Fazlyev A. А.1,Hodyrev A. N.1ORCID,Shusharin D. V.1,Glazkova A. V.1ORCID

Affiliation:

1. University of Tyumen

Abstract

This article provides a review of publications on the analysis of students’ satisfaction with the educational process based on natural language processing methods. 197 student feedback on 129 elective disciplines at University of Tyumen was collected. A comparative analysis of keyword extraction methods was conducted: statistical TF-IDF, RAKE and YAKE; contextual KeyBERT; graph-based TextRank. On the collected reviews, grouped by elective disciplines, the RAKE method had the highest F1 BERTScore with 79 %. By parsing open sources, a dataset with 2210 Russian-language reviews for courses of different educational platforms was formed. Machine learning methods for sentiment analysis were described: support vector machines, logistic regression and based on Transformers, comparison on the manually marked part of the collected reviews. After fine-tuning on the rubert-base-cased model macro-averaged F1- score became 71.6 %. Classification into three classes (negative, neutral, positive) is not performed for the whole text of the review, but separately for each sentence from that text. The implementation of a database and information system for collecting and analyzing student feedback on the studied elective courses are presented. The model for sentiment analysis of the feedback is put into a separate microservice, which is communicated through an interface of the freely distributed Python framework FastAPI. The information system is designed to help students choose electives based on more qualitative data, and teachers and university administration ‑ to draw conclusions for further transformation of the educational space, taking into account students’ opinions.

Publisher

Novosibirsk State University (NSU)

Subject

Pharmacology (medical)

Reference19 articles.

1. Fedorova N. K. Individualizatsiya obrazovaniya: model’ Tyumenskogo gosudarstvennogo universiteta / N.K. Fedorova // EdCrunch Tomsk : Materialy mezhdunarodnoi konferentsii po novym obrazovatel’nym tekhnologiyam, 29-31 maya 2019 goda. – Tomsk: Izdatel’skii Dom Tomskogo gosudarstvennogo universiteta, 2019. – p. 301-305 (in Russ).

2. Zakharova I. G., Vorobeva M. S., Boganyuk Yu. V. Support of individual educational trajectories based on the concept of explainable artificial intelligence. The Education and Science Journal. 2022; 24 (1): p.163–190. (In Russ.) DOI: 10.17853/1994-5639-2022-1-163-190

3. Gottipati S., Shankararaman V., Lin J. R. Text analytics approach to extract course improvement suggestions from students’ feedback. Res Pract Technol Enhanc Learn. 2018;13(1):6. DOI: 10.1186/s41039-018-0073-0.

4. Shejwal S., Deokar T., Dumbre B. Analysis of Student Feedback using Deep Learning. International Journal of Computer Applications Technology and Research, 2019. 8. p.161–164. DOI: 10.7753/IJCATR0805.1004.

5. Kirina M. A. Avtomaticheskaya otsenka vpechatlenii obuchayushchikhsya metodami analiza tonal’nosti (na materiale otzyvov na onlain-kursy na russkom i angliiskom) / M. A. Kirina, L. D. Tel’nina // Tsifrovaya gumanitaristika i tekhnologii v obrazovanii (DHTE 2022) : Sbornik statei III Vserossiiskoi nauchno-prakticheskoi konferentsii s mezhdunarodnym uchastiem, Moskva, 17–18 noyabrya 2022 goda / Pod redaktsiei V.V. Rubtsova, M.G. Sorokovoi, N.P. Radchikovoi. Moskva: Moskovskii gosudarstvennyi psikhologo-pedagogicheskii universitet, 2022. Р. 355–374. EDN VJVKLU. (In Russ.)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3