Improving the process of making management decisions in agriculture using artificial intelligence systems

Author:

Yalunina Ekaterina1,Pryadilina Natalya2,Skvorcov Egor3

Affiliation:

1. UrGEU

2. Federal State Budget Educational Institution of Higher Education «Ural State Forest Engineering University»

3. Ural State University of Economics

Abstract

Abstract. The problem of the quality of managerial decisions is one of the most acute problems of agriculture. Their quality can be improved with the use of digital technologies, including the use of artificial intelligence (AI) systems. The purpose of the study is to clarify the main stages of managerial decision-making, taking into account the use of AI systems. The scientific novelty lies in the development of a structural model for making a managerial decision, taking into account the use of AI systems, the main components of this process are identified. The research methods were the analysis of publications in the WoS scientific citation network on the topics “agriculture” and “artificial intelligence”, as well as the abstract-logical method in the analysis of the main stages of making a managerial decision. The results of the study were the determination of the composition and content of the stages of the procedural decision invariant, taking into account the use of artificial intelligence systems. The use of artificial intelligence systems allows diagnosing the occurrence of problems in crop production, animal husbandry, and technical systems at an early stage. Data collection and analysis in the process of making a managerial decision using AI systems includes direct data collection using sensors, cameras, scanners, etc., their cleaning and preliminary analysis, exploratory and statistical analysis, data modeling and interpretation of results. The use of AI systems will make it possible to operate with large data sets from agricultural production facilities, which will reduce uncertainty in making managerial decisions. The analysis of alternatives and the development of a management decision using AI systems turns off the forecasting of agricultural development indicators in a given system of constraints, the generation of alternative solutions and the choice of the optimal alternative, the acceptance or ignoring of the proposed alternatives. AI systems can be used to automate and optimize the process of implementing management decisions, monitoring and controlling management decisions. The use of AI systems to automate management decision-making processes in agriculture can help improve management efficiency.

Publisher

Urals State Agrarian University

Reference16 articles.

1. Мезоэкономика России: стратегия разбега: монография / Под ред. чл.-корр. РАН Г. Б. Клейнера. Москва: Издательский дом «Научная библиотека», 2022. 808 с., Mezoekonomika Rossii: strategiya razbega: monografiya / Pod red. chl.-korr. RAN G. B. Kleynera. Moskva: Izdatel'skiy dom «Nauchnaya biblioteka», 2022. 808 s.

2. Moazenzadeh R., Mohammadi B. Assessment of bio-inspired metaheuristic optimisation algorithms for estimating soil temperature // Geoderma. 2019. Vol. 353. Pp. 152–171. DOI: 10.1016/j.geoderma. 2019. 06.028., Moazenzadeh R., Mohammadi B. Assessment of bio-inspired metaheuristic optimisation algorithms for estimating soil temperature // Geoderma. 2019. Vol. 353. Pp. 152–171. DOI: 10.1016/j.geoderma. 2019. 06.028.

3. Raei B., Ahmadi A., Neyshaburi M.R., Ghorbani M.A., Asadzadeh F. Comparative evaluation of the whale optimization algorithm and backpropagation for training neural networks to model soil wind erodibility // Arabian journal of geosciences. 2021. Vol. 14, № 1. Article number 29. DOI: 10.1007/s12517-020-06328-0., Raei B., Ahmadi A., Neyshaburi M.R., Ghorbani M.A., Asadzadeh F. Comparative evaluation of the whale optimization algorithm and backpropagation for training neural networks to model soil wind erodibility // Arabian journal of geosciences. 2021. Vol. 14, № 1. Article number 29. DOI: 10.1007/s12517-020-06328-0.

4. Череватова Т. Ф., Ермолаева О. С. Искусственный интеллект: диагностика болезней растений по распознаванию изображений // Экономика и предпринимательство. 2021. № 2 (127). С. 980–985., Cherevatova T. F., Ermolaeva O. S. Iskusstvennyy intellekt: diagnostika bolezney rasteniy po raspoznavaniyu izobrazheniy // Ekonomika i predprinimatel'stvo. 2021. № 2 (127). S. 980–985.

5. Babaee M., Maroufpoor S., Jalali M., Zarei M., Elbeltagi A. AI Approach to Rice Yield Estimation // Irrigation and drainage. 2021. Vol. 70, № 4. Pp. 732–742. DOI: 10.1002/ird.2566., Babaee M., Maroufpoor S., Jalali M., Zarei M., Elbeltagi A. AI Approach to Rice Yield Estimation // Irrigation and drainage. 2021. Vol. 70, № 4. Pp. 732–742. DOI: 10.1002/ird.2566.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3