Forecasting of agri-food economic systems using artificial neural networks

Author:

Dubovitskiy Alyeksandr1,Klimentova El'vira1

Affiliation:

1. Michurinskiy gosudarstvennyy agrarnyy universitet

Abstract

Abstract. The purpose of the study was to substantiate the applicability of the use of artificial neural networks to the forecasting of agro-food economic systems. Methods. The research is based on the use of elements of the interpretative method in a combination of genetic, structural, functional, complex, systemic, and empirical approaches. The scientific novelty it consists in systematization of algorithms for the implementation of artificial neural networks and substantiation of their applicability for forecasting agro-food economic systems, development of an algorithm and architecture for building a neural network based on multiple data on agricultural markets, substantiation of directions for improving information infrastructure at the firm level. Results. The authors systematized intuitive and formalized forecasting methods, justified the place of methods based on machine learning in this system. The advantages and disadvantages of using artificial neural networks for forecasting agri-food economic systems are considered in detail, the expediency of their use from the point of view of compliance with the principles of forecasting is justified. The analysis of the main types of artificial neural networks allowed us to conclude that the most promising for the implementation of forecasting tasks are competitive neural networks with a back propagation algorithm (LSTM and GRU). The main objectives of building models based on neural networks for use in forecasting economic systems are formulated, the basic provisions of the sequence and methods of deploying neural networks in the forecasting process in the agri-food market are developed, the key elements of the organization of the forecasting process in individual economic entities are considered, practical aspects of the possibility of using a mathematical algorithm for modeling agri-food systems are considered, as well as the conditions for improving the information infrastructure at the firm level in order to ensure the availability of data sources and technologies for their processing.

Publisher

Urals State Agrarian University

Reference17 articles.

1. Булыгина О. В., Емельянов А. А., Росс Г. В., Яшин Е. С. Инвестиции, инновации, импортозамещение: имитационное моделирование с элементами искусственного интеллекта в управлении проектными рисками // Прикладная информатика. 2020. Т. 15, № 1 (85). С. 63–102. DOI: 10.24411/1993-8314-2020-10006., Bulygina O. V., Emel'yanov A. A., Ross G. V., Yashin E. S. Investicii, innovacii, importozameschenie: imitacionnoe modelirovanie s elementami iskusstvennogo intellekta v upravlenii proektnymi riskami // Prikladnaya informatika. 2020. T. 15, № 1 (85). S. 63–102. DOI: 10.24411/1993-8314-2020-10006.

2. Тормозов В. С., Кулпейс Е. А., Смагулова К. К. [и др.] Метод автоматизированного краткосрочного прогнозирования временного ряда в онлайн-режиме // Промышленные АСУ и контроллеры. 2021. № 7. С. 32–40. DOI: 10.25791/asu.7.2021.1296., Tormozov V. S., Kulpeys E. A., Smagulova K. K. [i dr.] Metod avtomatizirovannogo kratkosrochnogo prognozirovaniya vremennogo ryada v onlayn-rezhime // Promyshlennye ASU i kontrollery. 2021. № 7. S. 32–40. DOI: 10.25791/asu.7.2021.1296.

3. Самыгин Д. Ю., Барышников Н. Г., Мизюркина Л. А. Модели сценарного прогнозирования развития сельского хозяйства региона // Экономика региона. 2019. Т. 15, № 3. С. 865–879. DOI: 10.17059/2019-3-18., Samygin D. Yu., Baryshnikov N. G., Mizyurkina L. A. Modeli scenarnogo prognozirovaniya razvitiya sel'skogo hozyaystva regiona // Ekonomika regiona. 2019. T. 15, № 3. S. 865–879. DOI: 10.17059/2019-3-18.

4. Abbasimehr H., Shabani M., Yousefi M. An optimized model using LSTM network for demand forecasting // Computers and Industrial Engineering. 2020. Vol. 143. Article number 106435. DOI: 10.1016/j.cie.2020.106435., Abbasimehr H., Shabani M., Yousefi M. An optimized model using LSTM network for demand forecasting // Computers and Industrial Engineering. 2020. Vol. 143. Article number 106435. DOI: 10.1016/j.cie.2020.106435.

5. Blühdorn I., Deflorian M. The Collaborative Management of Sustained Unsustainability: on the performance of participatory forms of environmental governance // Sustainability. 2019. Vol. 11, No. 4. Article number 1189. DOI: 10.3390/su11041189., Blühdorn I., Deflorian M. The Collaborative Management of Sustained Unsustainability: on the performance of participatory forms of environmental governance // Sustainability. 2019. Vol. 11, No. 4. Article number 1189. DOI: 10.3390/su11041189.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3