The aspergillic acid biosynthetic gene cluster predicts neoaspergillic acid production in Aspergillus section Circumdati

Author:

Lebar M.D.1,Mack B.M.1,Carter-Wientjes C.H.1,Gilbert M.K.1

Affiliation:

1. Southern Regional Research Center, USDA-ARS, Food and Feed Safety Research Unit, 1100 Robert E Lee Blvd, New Orleans, 70124 LA, USA.

Abstract

The fungus Aspergillus flavus is an opportunistic crop pathogen that produces aflatoxins. Aflatoxins are potent carcinogenic and hepatotoxic secondary metabolites that are highly regulated in most countries. A. flavus also produces many other secondary metabolites and harbours more than 50 putative secondary metabolite biosynthetic gene clusters that have yet to be characterised. Bioactive secondary metabolites that augment the ability of the fungus to infect crops are of particular interest. Biosynthetic gene cluster 11 in A. flavus has been recently shown to encode for the biosynthesis of aspergillic acid, a toxic hydroxamic acid-containing pyrazinone compound that can bind iron, resulting in a red-orange pigment known as ferriaspergillin. A decrease in A. flavus pathogenicity and aflatoxin contamination was observed when aspergillic acid biosynthesis was blocked during maize seed infection. In this study, we probe the available genomes of Aspergillus species for biosynthetic gene cluster 11 homologs. We find that all species possessing gene cluster 11 produce aspergillic acid or a closely related isomer. We demonstrate that the Aspergillus section Flavi species harbouring biosynthetic gene cluster 11 produce a mixture of aspergillic acid, hydroxyaspergillic acid, and aspergillic acid analogs differing only in the amino acid precursors. Interestingly, many Aspergillus section Circumdati species, known mainly for their production of the problematic mycotoxin ochratoxin A, also harbour gene cluster 11 homologs, but do not produce aspergillic acid. Instead, these species produce neoaspergillic acid and its hydroxylated analog neohydroxyaspergillic acid, indicating that cluster 11 is responsible for neoaspergillic acid biosynthesis in Aspergillus section Circumdati.

Publisher

Wageningen Academic Publishers

Subject

Public Health, Environmental and Occupational Health,Toxicology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3