Kinematics and kinetics of dogs completing jump and A-frame exercises

Author:

Blake S.1,de Godoy R. Ferro1

Affiliation:

1. Writtle University College, Lordship Road, Writtle, Chelmsford, CM1 3RR, United Kingdom.

Abstract

Many police dogs do not reach their expected retirement age as they are no longer able to cope with the physical demands of the job. Annual licensing requires police dogs to complete a series of agility tasks, including jumping and negotiating an A-frame obstacle, both of which are associated with higher injury rates in canine agility competitors. This study sought to measure conformational, kinematic, and kinetic parameters of actively employed police German Shepherd Dogs (GSDs), whilst completing a 55 cm jump hurdle, and a standard A-frame. Each dog completed three repetitions of each obstacle and was also recorded at both walk and trot. Contact pressures and forces were measured, whilst joint kinematics were recorded using reflective markers and a high-speed camera. Results found that static hip angle was significantly correlated with hip flexion at trot, during jump suspension and at the apex of the A-frame. Stifle and hock flexion were greatest during the suspension phase of jump (56.98±11.710° and 54.51±17.430°). Shoulder and elbow flexion were greatest at the apex of A-frame (104.34±16.744° and 75.72±20.804°), whilst carpal extension was highest upon landing from the jump (125.77±7.071°). Peak vertical force (PFz) when normalised for body mass (BM) increased when landing from A-frame (14.28 N/kg BM) as opposed to landing from the jump obstacle (12.055 N/kg·BM). Our results show that increased range of motion (ROM) is required during both jumping and negotiation of A-frame compared to walk and trot, but more significantly, greater forces are incurred upon landing from the A-frame than compared to jumping. It was also observed that dogs were subject to high degrees of torsion in the distal limbs upon landing from the A-frame due to trained behaviours. We conclude that use of agility equipment generates greater forces through the musculoskeletal system and requires a greater ROM than what is experienced at walk and trot, which may contribute to early retirement ages in police dogs.

Publisher

Wageningen Academic Publishers

Subject

Physiology (medical),Veterinary (miscalleneous),Orthopedics and Sports Medicine,Physiology,Biochemistry,Endocrinology, Diabetes and Metabolism,Biophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Kinetics and kinematics of dog walk exercise in agility dogs of different experiences;Ciência Rural;2024

2. An update on mobility assessment of dogs with musculoskeletal disease;Journal of Small Animal Practice;2023-07-16

3. Management of Injuries in Agility Dogs;Veterinary Clinics of North America: Small Animal Practice;2023-07

4. Injury Risk Factors Associated With Training and Competition in Flyball Dogs;Topics in Companion Animal Medicine;2023-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3