Effect of a 4-week fish oil supplementation on neuromuscular performance after exhaustive exercise in young healthy men

Author:

Serajian A.1,Nourshahi M.1,LaVoy E.2,Eliaspour D.3,Rajabi H.4,Kondalaji R. Zekri5

Affiliation:

1. Department of Exercise physiology, Shahid-Beheshti University, Tehran, 19839-63112, Iran.

2. Department of Health and Human Performance, University of Houston, 3875 Holman St., Houston, TX 77204-6015, USA.

3. Department of physical medicine and rehabilitation, Shahid-Beheshti university of medical sciences, Tehran, 1989934147, Iran.

4. Department of exercise physiology, Kharazmi University, Tehran, 37551-31979, Iran.

5. Department of exercise physiology, Tabriz University, 29 Bahman Boulevard, Tabriz, 5166616471, Iran.

Abstract

Neuromuscular function is one of the important factors affecting athletic performance. Previous studies have shown that fish oil supplementation can improve performance. This study investigated the effect of fish oil on neuromuscular performance after exhausting exercise. Eighteen healthy men (mean ± standard deviation; age 26.9±2.6 years; weight 78.33±10.42 kg; height 175.8±4.9 cm; body fat percentage 18.40±5.46%) voluntarily participated and were randomly assigned to fish and corn oil groups in a double blind manner. Participants received 6 g/day of oil for 4 weeks, while maintaining baseline diet and training status during the study. Changes in maximal voluntary contraction (MVC) of the tibialis anterior muscle, neuromuscular propagation of tibialis anterior muscle (M-wave), corticospinal excitability (MEP: motor evoked potential), and the rate of perceived exertion (RPE) were evaluated before and after supplementation in response to a modified Bruce exhausting protocol. Group differences in changes in each variable following supplementation were assessed by two-way analysis of variances (ANOVA). Compared to corn oil, fish oil demonstrated less perceived exertion at the end of exhaustive exercise (F=9.72, P=0.001) after supplementation, and normalised MEP to M-wave showed a trend (F=3.83, P=0.071). However, M-wave peak to peak amplitudes changes were not significant between the groups (P>0.05). In addition, significant differences were observed between baseline MVC values of the group following supplementation. Thus, it seems that fish oil can improve corticospinal excitability, thereby improving neuromuscular function in exhausting activities. Therefore, fish oil supplementation may be recommended to increase performance in activities otherwise limited. However, the mechanism underlying this effect remains to be elucidated.

Publisher

Wageningen Academic Publishers

Subject

Physiology (medical),Veterinary (miscellaneous),Orthopedics and Sports Medicine,Physiology,Biochemistry,Endocrinology, Diabetes and Metabolism,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3