Fungal metabolites diversity in maize and associated human dietary exposures relate to micro-climatic patterns in Malawi

Author:

Matumba L.1,Sulyok M.2,Monjerezi M.3,Biswick T.3,Krska R.2

Affiliation:

1. Department of Agricultural Research Services, Chitedze Station, P.O. Box 158, Lilongwe, Malawi

2. Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Str. 20, 3430 Tulln, Austria

3. Chancellor College, Department of Chemistry, University of Malawi, P.O. Box 280, Zomba, Malawi

Abstract

This study investigated the diversity of fungal metabolites in maize across four agro-ecological zones of Malawi. A total of 90 maize samples (for human consumption), collected from farmsteads, were analysed for 235 fungal metabolites using liquid chromatography-tandem mass spectrometry. A total of 65 metabolites were found in the samples. 75% of samples from the hottest agro-ecological zone contained either aflatoxins, fumonisins, deoxynivalenol, zearalenone; or a combination thereof in levels exceeding European Union (EU) maximum levels, whereas the related fraction was only 17% in the cool temperature zone. Aflatoxins, citrinin, 3-nitropropionic acid, monocerin and equisetin were most prevalent and in higher levels in samples from hot agro-ecological zones, whereas deoxynivalenol, nivalenol, zearalenone and aurofusarin were most prevalent in cool agro-ecologies. On the basis of per-capita maize consumption, estimated daily intakes for all samples from hot ecologies were well above the JECFA's provisional maximum tolerable daily intake (PMTDI) of 2.0 μg/kg body weight (bw)/day for fumonisins, whereas the PMTDI of 1.0 μg/kg bw/day for deoxynivalenol was exceeded in relatively more (90%) samples from the cool highlands than the other zones. These results demonstrate the influence of micro-climatic conditions on mycotoxin prevalence patterns and underscores the need for development of agro-ecological specific mycotoxin dietary exposure management strategies.

Publisher

Wageningen Academic Publishers

Subject

Public Health, Environmental and Occupational Health,Toxicology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3