Relationship between drought and preharvest aflatoxin contamination in groundnut (Arachis hypogaea L.)

Author:

Jeyaramraja P.R.1,Meenakshi S. Nithya2,Woldesenbet F.1

Affiliation:

1. Department of Biology, College of Natural Sciences, Arba Minch University, P.O. Box 21, Arba Minch, Gamo Gofa Zone, Ethiopia

2. Department of Botany, PSGR Krishnammal College for Women, Peelamedu, Coimbatore 641 004, Tamilnadu, India

Abstract

Groundnut is a commercial oilseed crop that is prone to infection by Aspergillus flavus or Aspergillus parasiticus. Drought impairs the defence mechanism of the plant and favours the production of aflatoxin by the fungus. Aflatoxin is a carcinogen and its presence in food and feed causes significant economic loss. The answer to the question, ‘how drought tolerance and aflatoxin resistance are related?’ is not clear. In this review paper, the relationship of drought and preharvest aflatoxin contamination (AC), the relationship of drought tolerance traits and AC, and the approaches to enhance resistance to AC are discussed using up-to-date literature. Factors leading to AC are drought, high geocarposphere temperature, kernel/pod damage, and reduced phytoalexin synthesis by the plant. If the fungus colonises a kernel with reduced water activity, the plant cannot synthesise phytoalexin and then, the fungus synthesises aflatoxin. Breeding for resistance to AC is complicated because aflatoxin concentration is costly to measure, highly variable, and influenced by the environment. Since drought tolerant cultivars have resistance to AC, traits of drought tolerance have been used as indirect selection tools for reduced AC. The genetics of aflatoxin resistance mechanisms have not been made clear as the environment influences the host-pathogen relationship. Host-pathogen interactions under the influence of environment should be studied at molecular level to identify plant resistant factors using the tools of genomics, proteomics, and metabolomics in order to develop cultivars with durable resistance. Many candidate genes involved in host-pathogen interactions have been identified due to improvements in fungal expressed sequence tags, microarrays, and genome sequencing techniques. Moreover, research projects are underway on identifying genes coding for antifungal compounds, resistance associated proteins and quantitative trait loci associated with aflatoxin resistance. This review is expected to help those who wish to work on reducing AC in groundnuts.

Publisher

Wageningen Academic Publishers

Subject

Public Health, Environmental and Occupational Health,Toxicology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3