Evaluation of resistance to aflatoxin contamination in kernels of maize genotypes using a GFP-expressing Aspergillus flavus strain

Author:

Rajasekaran K.1,Sickler C.M.1,Brown R.L.1,Cary J.W.1,Bhatnagar D.1

Affiliation:

1. USDA-ARS, Southern Regional Research Center, 1100 Robert E. Lee Blvd, New Orleans, LA 70124, USA

Abstract

Resistance or susceptibility of maize inbreds to infection by Aspergillus flavus was evaluated by the kernel screening assay. A green fluorescent protein-expressing strain of A. flavus was used to measure fungal spread and aflatoxin levels in real-time following fungal infection of kernels. Among the four inbreds tested, MI82 showed the most resistance and Ga209 the least. TZAR101 was also resistant to fungal infection, whereas Va35 was susceptible to fungal infection. However, Va35 produced lower aflatoxin levels compared to the susceptible line Ga209. Fluorescence microscopy indicated that the site of entry of the fungus into the kernel was consistently through the pedicel. Entry through the pericarp was never observed in undamaged kernels. In view of these results, incorporation or overexpression of antifungal proteins should be targeted to the pedicel and basal endosperm region in developing kernels. Once the fungus has entered through the pedicel, it spreads quickly through the open spaces between the pericarp and the aleurone layer, ultimately colonising the endosperm and scutellum and, finally, the embryo. A clear correlation was established between fungal fluorescence and aflatoxin levels. This method provides a quick, reliable means of evaluating resistance to A. flavus in undamaged kernels and provides breeders with a rapid method to evaluate maize germplasm.

Publisher

Wageningen Academic Publishers

Subject

Public Health, Environmental and Occupational Health,Toxicology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3