Multi-mycotoxin production of cheese-derived fungal strains in vitro and in cheese models

Author:

Ozturkoglu-Budak S.1,Akal H.C.1,Öztürk H.İ.2

Affiliation:

1. Department of Dairy Technology, Faculty of Agriculture, Ankara University, 06100 Ankara, Turkey.

2. Department of Food Engineering, Faculty of Engineering and Architecture, Konya Food and Agriculture University, 42080 Konya, Turkey.

Abstract

With regards to the cheese industry, fungal growth is a widespread problem and usually producers make effort to avoid fungal development due to mycotoxin formation which adversely affects human health, reduces product quality, and causes economic losses. However, some fungal strains are also used as secondary cultures to obtain developed sensory properties in cheese as a result of the enzymatic activities of these strains. Non-commercial strains isolated from mould-ripened cheeses and/or autochthonous strains that spontaneously grown on cheese have much greater effect on the acquisition of appreciated sensory and textural characteristics in cheese. Autochthon strains particularly ensure a characteristic aroma of traditional cheeses that are not commercially produced and can be a potential adjunct providing not produce mycotoxins. In this study, 14 different Penicillium species previously isolated from traditional mould-ripened cheeses in cave were investigated for their mycotoxin production in both in vitro culture medium and in situ in cheese model. The results revealed that although individual strains produced various and higher amounts of mycotoxins in the culture medium, the number of produced mycotoxins and the obtained values were determined quite low in the cheese medium. The outcomes of this study highlight the mycotoxin production of strains depends on the composition and structure of the food matrix that they integrated and many different factors, such as presence of free fatty acids, antimicrobial and antifungal compounds of lactic acid bacteria, lack of carbohydrate sources, and sulfhydryl-containing compounds, such as cysteine and glutathione. Therefore, the method used in this study has a potential to be a new solution in the industry to produce mould-ripened cheeses under controlled conditions without any potential health risk.

Publisher

Brill

Subject

Public Health, Environmental and Occupational Health,Toxicology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3