Development of early maturity maize hybrids for resistance to Fusarium and Aspergillus ear rots and their associated mycotoxins

Author:

Stagnati L.1,Martino M.1,Battilani P.1,Busconi M.12,Lanubile A.12,Marocco A.12

Affiliation:

1. Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via E. Parmense, 84, 29122, Piacenza, Italy.

2. Research Centre for Biodiversity and Ancient DNA, Università Cattolica del Sacro Cuore, Via E. Parmense, 84, 29122, Piacenza, Italy.

Abstract

Maize is mainly affected by two fungal pathogens, Fusarium verticillioides and Aspergillus flavus, causing Fusarium ear rot (FER) and Aspergillus ear rot (AER), respectively. Both fungi are of concern to stakeholders as they affect crop yield and quality, contaminating maize grains with the mycotoxins fumonisins and aflatoxins. The easiest strategy to prevent pre-harvest contamination by F. verticillioides and A. flavus is to develop maize hybrids resistant to FER and AER, as well as to their associated mycotoxins. The objective of this investigation was to test 46 F1 hybrids, originated from different Italian, US and Canadian breeding groups, for these important traits and their agronomic performances. All hybrids were planted and artificially inoculated with toxigenic strains of F. verticillioides and A. flavus at two locations in 2017, and the best performing 17 out of 46 were also tested in 2018. Ear rots were present in all hybrids in 2017 and 2018, with percentages ranging from 6.50 to 49.50%, and 5.50 to 45.53%, for FER and AER, respectively. Seven hybrids (PC8, PC15, PC9, PC11, PC14, PC34 and PC17) presented the lowest levels of both diseases considering the overall locations and growing seasons, and three of these (PC8, PC11 and PC14) were also amongst the least mycotoxin contaminated hybrids in 2017. The inbred lines used in hybrid production may provide additional sources of resistance suitable in breeding programs targeting multiple pathogens and their mycotoxins.

Publisher

Wageningen Academic Publishers

Subject

Public Health, Environmental and Occupational Health,Toxicology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3