The association of maize characteristics with resistance to Fusarium verticillioides and fumonisin accumulation in commercial maize cultivars

Author:

Links S.12,van Zyl K.1,Cassiem A.1,Flett B.C.3,Viljoen A.1,Rose L.J.1

Affiliation:

1. Stellenbosch University, Faculty of AgriSciences, Stellenbosch, Matieland 7602, South Africa.

2. Grain SA, Research and Policy Centre, 457 Witherite Street, Willow Acres, Pretoria, 7600, South Africa.

3. Agricultural Research Council, Grain Crops, Potchefstroom, 2520, South Africa.

Abstract

Fusarium verticillioides is the primary fungus that causes Fusarium ear rot (FER) of maize. Infection results in reduced grain yield and quality due to moulding and the contamination of grain with toxic compounds namely fumonisins. Resistance to fungal infection and fumonisin accumulation in maize and maize grain is governed at different levels. In this study, the structural, physico-chemical and genetic basis of resistance to F. verticillioides was investigated in two, replicated field trials at Potchefstroom and Vaalharts in South Africa. Phenotypic data (silk length, husk coverage, pericarp thickness hundred-kernel mass and kernel hardness), physico-chemical data (kernel pH, moisture content, total nitrogen and carbon as well as phenolic acid content) and the expression of pathogenesis-related-5 gene (PR5) and peroxidase gene expression was evaluated in 15 commercial cultivars under artificially inoculated and natural infection conditions. The data were correlated to FER severity, fumonisin accumulation and fungal DNA (referred to as infection indicators). Disease development and fumonisin contamination in Vaalharts was significantly more than in Potchefstroom. There were no significant correlations (r=≥0.60) between phenotypic characteristics and infection indicators. Kernel pH was the most important trait associated with disease development and was negatively correlated (between r=-0.58 and r=-0.75) to all infection indicators. PR5 gene expression had significant positive correlations (r=0.69 and r=0.72) with the fungal and fumonisin levels, respectively. This study presents of the first data demonstrating the use of gene expression in identifying FER/fumonisin-resistant plant material and could aid breeders and growers in selecting resistant material more effectively.

Publisher

Wageningen Academic Publishers

Subject

Public Health, Environmental and Occupational Health,Toxicology,Food Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3