Application of reflectance spectroscopy to identify maize genotypes and aflatoxin levels in single kernels

Author:

Aoun M.12,Siegel C.1,Windham G.L.3,Williams W.P.3,Nelson R.J.1

Affiliation:

1. School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.

2. Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA.

3. USDA, Agricultural Research Service, Corn Host Plant Resistance Research Unit, Mississippi State, MS 39762, USA.

Abstract

Spectroscopy is a rapid, non-destructive, and low-cost analytical technique that has the potential to complement more resource-intensive analytical methods. We explored the use of spectral methods to differentiate maize genotypes and assess aflatoxin (AF) contamination in maize kernels. We compared the performance of two instruments: a research-grade ultraviolet-visible-near infrared (UV-Vis-NIR) spectrometer that measures reflectance from 304 -1,085 nm, and a miniaturised NIR spectrometer that measures reflectance from 740-1,070 nm. Both systems were used to predict AF levels in maize kernels from a single genotype and across 10 genotypes, and to predict genotype for the latter. A partial least square discriminant analysis model was trained on 70% of the kernels and tested on the remaining 30%. The classification accuracy for 10 maize genotypes was 71-72% using the UV-Vis-NIR instrument on 1,170 kernels, and 65-66% using the NIR device on 740 kernels. The classification accuracy for 247 AF-contaminated kernels of a single genotype using the UV-Vis-NIR instrument was 71, 82, and 92% for AF thresholds of 20, 100, and 1000 μg/kg, respectively. Using the same spectrometer on 872 kernels from 10 genotypes, AF classification accuracy was 67, 90, and 95% in validation sets for AF thresholds of 20, 100, and 1000 μg/kg, respectively. The UV-Vis-NIR instrument and the NIR device had similar classification accuracies for AF thresholds of 100 and 1000 μg/kg, whereas the NIR device had higher accuracy for the AF threshold of 20 μg/kg. Reflectance spectroscopy outperformed visual sorting and the bright greenish yellow fluorescence test in identifying AF levels. Applying spectral analysis to estimate mycotoxin levels and to identify maize genotypes could contribute to regional toxin surveillance and action efforts. Further, using AF-associated spectral features for grain sorting can reduce AF exposure.

Publisher

Wageningen Academic Publishers

Subject

Public Health, Environmental and Occupational Health,Toxicology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3