Muscle microvascular adaptation and angiogenic gene induction in response to exercise training are attenuated in middle-aged rats

Author:

Suzuki J.1

Affiliation:

1. Laboratory of Exercise Physiology, Health and Sports Sciences, Course of Sports Education, Department of Education, Hokkaido Universityof Education, Midorigaoka, Iwamizawa, Hokkaido, 068-8642, Japan

Abstract

This study was designed to investigate exercise-induced changes in muscle capillarisation, the mRNA expression of angiogenic genes, and microRNA levels in young and middle-aged rats. Rats in the training groups were subjected to treadmill running 5 days a week for 3 weeks. The exercise protocol for the young (12-week old) group was 20-25 m/min, 40-60 min/day with a gradient of 15%, and for the middle-aged (12-month old) group was 18-20 m/min, 40-60 min/day with a gradient of 5%. The enzyme histochemical identification of capillary profiles was performed on cross-sections of gastrocnemius muscle. Total RNA was isolated, reverse transcription was performed, and mRNA and microRNA levels were determined by real-time PCR. The capillary-to-fibre ratio was significantly increased by exercise training in the young group (by 10%), but only slightly in the middle-aged (by 5%) group. Vascular endothecial growth factor (VEGF) mRNA levels were at significantly higher values after acute exercise (1.6-fold) and the 3-week training protocol (1.9-fold) in the young group, but not in the middle-aged group. VEGF protein expression levels were significantly increased after training in the young group only. Endothelial nitric oxide synthase, VEGF-R2 and thrombospondin-1 mRNA levels were significantly lower in the middle-aged group than in the young group. Anti-angiogenic miR-195 levels were significantly enhanced by exercise training in the middle-aged group only. These results indicated that the exercise-induced adaptation of muscle capillarity was attenuated in middle-aged rats, possibly by the lower induction of VEGF and up-regulation of anti-angiogenic miRNA expression.

Publisher

Wageningen Academic Publishers

Subject

Physiology (medical),Veterinary (miscalleneous),Orthopedics and Sports Medicine,Physiology,Biochemistry,Endocrinology, Diabetes and Metabolism,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3