The effect of trace minerals on the stability of retinol acetate, cholecalciferol and selenomethionine stability within premixes

Author:

Concarr M.1,Sinkunaite I.1,Murphy R.1

Affiliation:

1. Alltech Ireland, Summerhill Road, Sarney, Dunboyne, Co. Meath, Ireland.

Abstract

This study compared the effect of an organic proteinate mineral source and an inorganic sulphate mineral source in relation to their effect on the stability of retinol acetate and cholecalciferol within simulated premixes, while comparing the stability of two different selenomethionine (SeMet) sources (selenium enriched yeast (SeYeast) and the chemically synthesised L-SeMet) in the presence of inorganic sulphate mineral sources within simulated premixes. Four vitamin-trace mineral premixes, two containing organic trace mineral sources in the form of proteinates and two containing inorganic trace mineral sources in the form of sulphates, were formulated so that, when added to a complete broiler feed at the appropriate inclusion rates, they contained the same amount of retinol acetate and cholecalciferol and varying levels of trace minerals (National Research Council recommended level, commonly used industry level or a reduced inclusion level). The two SeMet-trace mineral premixes were formulated to contain commonly used industry levels of vitamins and trace minerals. The two SeMet-trace mineral premixes differed in the source of SeMet. One premix contained chemically synthesised L-SeMet while the other contained SeYeast. The vitamin content of the four vitamin-trace mineral premixes was analysed after 14 and 84 days in storage by ultra-high performance liquid chromatography and the amount present within each of the premixes was compared to the quantity determined prior to storage. In general, the premixes formulated with the sulphate trace mineral source were found to have higher losses of retinol acetate and cholecalciferol than those formulated with the proteinate trace mineral source. The inclusion of the proteinate minerals at both National Research Council and reduced inclusion levels significantly (P≤0.05) increased the stability of both the vitamins when compared to the inorganic sulphate mineral sources included at commonly used industry levels. The SeMet content of the two SeMet-trace mineral premixes was analysed after 49 days in storage by high performance liquid chromatography – inductively coupled plasma mass spectrometry and the amount of SeMet present within each of the samples was compared to the quantity determined prior to storage. SeMet present within the SeYeast was found to be significantly more stable (P≤0.05) than the chemically synthesised L-SeMet.

Publisher

Wageningen Academic Publishers

Subject

Animal Science and Zoology

Reference36 articles.

1. Bao, Y.M. and Choct, M., 2009. Trace mineral nutrition for broiler chickens and prospects of application of organically complexed trace minerals: a review. Animal Production Science 49: 269-282. https://doi.org/10.1071/EA08204

2. Brozmanová, J., Mániková, D., Vlčková, V. and Chovanec, M., 2010. Selenium: a double-edged sword for defense and offence in cancer. Archives of Toxicology 84: 919-938. https://doi.org/10.1007/s00204-010-0595-8

3. Coelho, M., 2002. Vitamin stability in premixes and feeds – a practical approach in ruminant diets. In: Proceedings 13th Annual Florida Ruminant Nutrition Symposium. pp. 127-145. Available at: https://tinyurl.com/55z3mjah.

4. Vitamin stability in premixes and feeds: a practical approach5671

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3