Plantaricin IIA-1A5 from Lactobacillus plantarum IIA-1A5 displays bactericidal activity against Staphylococcus aureus

Author:

Arief I. Isnafia1,Budiman C.123,Jenie B. Sri Laksmi4,Andreas E.1,Yuneni A.1

Affiliation:

1. Department of Animal Production and Technology, Faculty of Animal Science, Bogor Agricultural University (IPB), Jl. Agatis, IPB Darmaga Campus, Bogor 16680, Indonesia

2. Okinawa Institute of Science and Technology, 1919-1 Tancha, Kunigami, Onna son, Okinawa 904-0495, Japan

3. Biotechnology Research Institute, Universiti Malaysia Sabah (UMS), Jl. UMS 88400, Kota Kinabalu, Sabah, Malaysia

4. Food Microbiology Laboratory, Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, Bogor Agricultural University (IPB). P.O. Box 220, Bogor 16680, Indonesia

Abstract

Plantaricin IIA-1A5 is a bacteriocin produced by Lactobacillus plantarum IIA-1A5 isolated from Indonesian beef. This research aimed to identify the genes involved in plantaricin IIA-1A5 production and examine its mode of action against Staphylococcus aureus. It has been reported that a bacteriocin structural gene, plnW, is present in genome of L. plantarum IIA-1A5. Here, we reported the presence of additional genes responsible for plantaricin precursor (plnA and plnEF) and a gene encoding the quorum sensor of histidine kinase (plnB). It indicates that genes involved in production of plantaricin IIA-1A5 are organized in at least two bacteriocin operons (plnABCD, plnEFI) and a structural plnW gene. Purified plantaricin IIA-1A5 yielded a single band in SDS-PAGE with apparent size of 6.4 kDa. Amino acid composition of purified plantaricin IIA-1A5 was mainly composed of cationic glutamic acid and cysteine that allowed the formation of disulphide bonds, suggesting plantaricin IIA-1A5 belongs to the pediocin-subclass of class II bacteriocins. Plantaricin IIA-1A5 displayed remarkable antibacterial activity against S. aureus, which was initiated by the adsorption of plantaricin IIA-1A5 onto the cell membrane of S. aureus. The adsorption is hypothesised to be facilitated by non-ionic interactions as it is reduced by the presence of organic solvents or detergents. This adsorption promoted leakage of cellular metabolites through the cell membrane of S. aureus, as indicated by the release of genetic and proteinaceous material of S. aureus observed at 260 and 280 nm, respectively. The leakage also promoted the release of divalent (Ca2+, Mg2+) and monovalent (K+) cations. The release of these intracellular components might be due to pores formed in the cell membrane of S. aureus by plantaricin IIA-1A5 as shown by scanning electron microscopy. Altogether, the mode of action of plantaricin IIA-1A5 against S. aureus seems to be bactericidal as indicated by lysis of the cell membrane.

Publisher

Wageningen Academic Publishers

Subject

Microbiology (medical),Microbiology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3