Potentially probiotic and bioprotective lactic acid bacteria starter cultures antagonise the Listeria monocytogenes adhesion to HT29 colonocyte-like cells

Author:

Garriga M.1,Rubio R.1,Aymerich T.1,Ruas-Madiedo P.2

Affiliation:

1. IRTA-Food Safety Programme, Finca Camps i Armet, 17121 Monells, Girona, Spain

2. Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain

Abstract

The capability of five lactic acid bacteria (LAB) to counteract the adhesion of Listeria monocytogenes to the epithelial intestinal cell line HT29 was studied. The highest adhesion ability to HT29 was achieved by the intestinal strain Lactobacillus rhamnosus CTC1679, followed by the meat-derived strains Lactobacillus sakei CTC494 and Enterococcus faecium CTC8005. Surprisingly, the meat strains showed significantly better adhesion to HT29 than two faecal isolates of Lactobacillus casei and even significantly higher than the reference strain L. rhamnosus GG. Additionally, the anti-listerial, bacteriocin-producer starter culture L. sakei CTC494 was able to significantly reduce the adhesion of L. monocytogenes to HT29 in experiments of exclusion, competition and inhibition. The performance was better than the faecal isolate L. rhamnosus CTC1679. Our results reinforce the fact that the ability of LAB to interact with a host epithelium model, as well as to antagonise with foodborne pathogens, is a strain-specific characteristic. Additionally, it is underlined that this trait is not dependent on the origin of the bacterium, since some food LAB behave better than intestinal ones. Therefore, the search for novel strains in food niches is a suitable approach to find those with potential health benefits. These strains are likely pre-adapted to the food environment, which would make their inclusion in the formulation of probiotic foods more feasible.

Publisher

Wageningen Academic Publishers

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3