A HYBRID MODIFIED SUBGRADIENT ALGORITHM THAT SELF-DETERMINES THE PROPER PARAMETER VALUES

Author:

SARAÇ Tuğba1ORCID,TUTUMLU Büşra2ORCID,AKYOL ÖZER Emine3ORCID

Affiliation:

1. ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ

2. Kütahya Dumlupınar Üniversitesi

3. ESKİŞEHİR TEKNİK ÜNİVERSİTESİ

Abstract

A successful solution algorithm for non-convex optimization problems is the Modified Subgradient Algorithm (MSGA), which solves dual problems based on the sharp augmented lagrangian function. However, its performance highly depends on its parameter values, and determining the appropriate parameter values is difficult as they can be completely different for each problem. In this study, a new hybrid solution approach that a tabu search algorithm to find the appropriate MSGA parameter values and the MSGA algorithm run together is proposed. Although it seems like a contradiction to use an algorithm that also has its parameters to determine the most appropriate parameter values of an algorithm, this contradiction is eliminated by fixing the parameter values of the tabu search algorithm. The proposed algorithm does not need appropriate values of any algorithm parameter. It can find appropriate parameter values for each problem itself starting with the same fixed initial values. To show the success of the developed algorithm, especially on 0-1 quadratic problems, it is compared with the classical MSGA algorithm by using the quadratic knapsack test instances taken in the literature. According to the obtained solutions, the superiority of the hybrid algorithm has been demonstrated.

Publisher

Kütahya Dumlupinar Üniversitesi

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3